Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of Low Temperature Selective Catalytic Reduction (SCR) Catalysts for Future Emissions Regulations

2014-04-01
2014-01-1520
A series of novel metal-oxide (TiO2, TiO2-SiO2)-supported Mn, Fe, Co, V, Cu and Ce catalysts were prepared by incipient wetness technique and investigated for the low-temperature selective catalytic reduction (SCR) of NOx with ammonia at industrial relevantly conditions. Among all the prepared catalysts, Cu/TiO2 showed superior de-NOx performance in the temperature range of 150-200 °C followed by Mn/TiO2 in the temperature range of 200-250 °C. The Ce/TiO2 catalyst exhibited a broad temperature window with notable de-NOx performance in the temperature regime of 250-350 °C. The phyico-chemical characterization results revealed that the activity enhancement was correlated with the properties of the support material. All the anatasetitania-supported catalysts (M/TiO2 (Hombikat)) demonstrated significantly high de-NOx performance above 150 °C.
Journal Article

Secondary Fuel Injection Characterization of a Diesel Vaporizer for Active DPF Regeneration

2014-04-01
2014-01-1494
Secondary fuel injection is applied to facilitate active soot management of the particulate filter within diesel aftertreatment systems, avoiding concerns with fuel delivery via in-cylinder post-injection. System performance is dependent on the thermo-fluid interactions of the injected fuel with the exhaust stream, with the intent of having more fully vaporized fuel and a well-mixed air-fuel mixture at the inlet of the oxidation catalyst for uniform thermal distribution as it exothermically reacts. Pre-heating the fuel with a diesel vaporizer prior to its delivery into the exhaust enables improved system performance, reducing droplet sizes and mixing demands. A diesel vaporizer is applied within the exhaust of a medium duty truck application, and the response of the catalyst is characterized across a variety of conditions.
Journal Article

Secondary Fuel Injection Layout Influences on DOC-DPF Active Regeneration Performance

2013-09-24
2013-01-2465
Catalysts and filters continue to be applied widely to meet particulate matter regulations across new and retrofit diesel engines. Soot management of the filter continues to be enhanced, including regeneration methodologies. Concerns regarding in-cylinder post-injection of fuel for active regeneration increases interests in directly injecting this fuel into the exhaust. Performance of secondary fuel injection layouts is discussed, and sensitivities on thermal uniformity are measured and analyzed, providing insight to packaging challenges and methods to characterize and improve application designs. Influences of end cone geometries, mixers, and injector mounting positions are quantified via thermal distribution at each substrate's outlet. A flow laboratory is applied for steady state characterization, repeated on an engine dynamometer, which also provides transient results across the NRTC.
Technical Paper

Design Improvements of Urea SCR Mixing for Medium-Duty Trucks

2013-04-08
2013-01-1074
To meet the 2010 diesel engine emission regulations, an aftertreatment system was developed to reduce HC, CO, NOx and soot. In NOx reduction, a baseline SCR module was designed to include urea injector, mixing decomposition tube and SCR catalysts. However, it was found that the baseline decomposition tube had unacceptable urea mixing performance and severe deposit issues largely because of poor hardware design. The purpose of this article is to describe necessary development work to improve the baseline system to achieve desired mixing targets. To this end, an emissions Flow Lab and computational fluid dynamics were used as the main tools to evaluate urea mixing solutions. Given the complicated urea spray transport and limited packaging space, intensive efforts were taken to develop pre-injector pipe geometry, post-injector cone geometry, single mixer design modifications, and dual mixer design options.
Technical Paper

Increasing Efficiency in Gasoline Powertrains with a Two-Stage Variable Compression Ratio (VCR) System

2013-04-08
2013-01-0288
Downsizing in combination with turbocharging currently represents the main technology trend for meeting CO2 emissions with gasoline engines. Besides the well-known advantages of downsizing the compression ratio has to be reduced in order to mitigate knock at higher engine loads along with increased turbocharging demand to compensate for the reduction in power. Another disadvantage occurs at part load with increasing boost pressure levels causing the part load efficiencies to deteriorate. The application of a variable compression ratio (VCR) system can help to mitigate these disadvantages. The 2-stage VCR system with variable kinetic lengths entails variable powertrain components which can be used instead of the conventional components and thus only require minor modifications for existing engine architectures. The presented variable length connecting rod system has been continuously developed over the past years.
Technical Paper

Developing Drivetrain Robustness for Small Engine Testing

2013-04-08
2013-01-0400
The increased demand in fuel economy and the reduction of CO₂ emissions results in continued efforts to downsize engines. The downsizing efforts result in engines with lower displacement as well as lower number of cylinders. In addition to cylinder and displacement downsizing the development community embarks on continued efforts toward down-speeding. The combination of the aforementioned factors results in engines which can have high levels of torsional vibrations. Such behavior can have detrimental effects on the drivetrain particularly during the development phase of these. Driveshafts, couplings, and dynamometers are exposed to these torsional forces and depending on their frequency costly damages in these components can occur. To account for these effects, FEV employs a multi-body-system modeling approach through which base engine information is used to determine optimized drivetrain setups. All mechanical elements in the setup are analyzed based on their torsional behavior.
Technical Paper

Passive Regeneration Response Characteristics of a DPF System

2013-04-08
2013-01-0520
This study investigates the passive regeneration behavior of diesel particulate filters (DPFS) with various PGM loadings under different engine operating conditions. Four wall-flow DPFs are used; one uncoated and three wash-coated with low, medium, and high PGM loadings, with and without an upstream diesel oxidation catalyst (DOC). DPFs with variable pre-soot loads are evaluated at two steady state temperatures (300°C and 400°C), as well as across three levels of transients based on the 13-mode ESC cycle. Passive regeneration rates are calculated based on pre and post soot gravimetric measurements along with accumulated soot mass rates for specified exhaust mass flow rates and temperatures. Results illustrate the effect of temperature, NO₂ content, and soot loading on passive regeneration without upstream DOCs or DPF wash coatings.
Technical Paper

A Low NVH Range-Extender Application with a Small V-2 Engine - Based on a New Vibration Compensation System

2012-10-23
2012-32-0081
The interest in electric propulsion of vehicles has increased in recent years and is being discussed extensively by experts as well as the public. Up to now the driving range and the utilization of pure electric vehicles are still limited in comparison to conventional vehicles due to the limited capacity and the long charging times of today's batteries. This is a challenge to customer acceptance of a pure electric vehicle, even for a city car application. A Range Extender concept could achieve the desired customer acceptance, but should not impact the “electric driving” experience, and should not cause further significant increases in the manufacturing and purchasing cost. The V2 engine concept presented in this paper is particularly suited to a low cost, modular vehicle concept. Advantages regarding packaging can be realized with the use of two generators in combination with the V2 engine.
Journal Article

Development of Common Rail and Manifold Fluid Delivery Systems for Large Diesel Engine Aftertreatement

2012-09-24
2012-01-1961
EPA 2015 Tier IV emission requirements pose significant challenges to large diesel engine aftertreatment system (EAS) development aimed at reducing exhaust emissions such as NOx and PM. An EAS has three primary subsystems, Aftertreatment hardware, controls and fluid delivery. Fluid delivery is the subsystem which supplies urea into exhaust stream to allow SCR catalytic reaction and/or periodic DOC diesel dosing to elevate exhaust temperatures for diesel particulate filter (DPF) soot regeneration. The purpose of this paper is to discuss various aspects of fluid delivery system development from flow and pressure perspective. It starts by giving an overview of the system requirements and outlining theoretical background; then discusses overall design considerations, injector and pump selection criteria, and three main injector layouts. Steady state system performance was studied for manifold layout.
Technical Paper

Overview of Large Diesel Engine Aftertreatment System Development

2012-09-24
2012-01-1960
The introduction of stringent EPA 2015 regulations for locomotive / marine engines and IMO 2016 Tier III marine engines initiates the need to develop large diesel engine aftertreatment systems to drastically reduce emissions such as SOx, PM, NOx, unburned HC and CO. In essence, the aftertreatment systems must satisfy a comprehensive set of performance criteria with respect to back pressure, emission reduction efficiency, mixing, urea deposits, packaging, durability, cost and others. Given multiple development objectives, a systematic approach must be adopted with top-down structure that addresses top-level technical directions, mid-level subsystem layouts, and bottom-level component designs and implementations. This paper sets the objective to provide an overview of system development philosophy, and at the same time touch specific development scenarios as illustrations.
Technical Paper

Transient Drive Cycle Modeling of Supercharged Powertrains for Medium and Heavy Duty On-Highway Diesel Applications

2012-09-24
2012-01-1962
The problem with traditional drive cycle fuel economy analysis is that kinematic (backward looking) models do not account for transient differences in charge air handling systems. Therefore, dynamic (forward looking) 1D performance simulation models were created to predict drive cycle fuel economy which encompass all the transient elements of fully detailed engine and vehicle models. The transient-capable technology of primary interest was mechanical supercharging which has the benefit of improved boost response and "time to torque." The benefits of a supercharger clutch have also been evaluated. The current US class 6-8 commercial vehicle market exclusively uses turbocharged diesel engines. Three vehicles and baseline powertrains were selected based on a high-level review of vehicle sales and the used truck marketplace. Fuel economy over drive cycles was the principal output of the simulation work. All powertrains are based on EPA 2010 emission regulations.
Technical Paper

Transient Performance of an HC LNC Aftertreatment System Applying Ethanol as the Reductant

2012-09-24
2012-01-1957
As emissions regulations around the world become more stringent, emerging markets are seeking alternative strategies that align with local infrastructures and conditions. A Lean NOx Catalyst (LNC) is developed that achieves up to 60% NOx reduction with ULSD as its reductant and ≻95% with ethanol-based fuel reductants. Opportunities exist in countries that already have an ethanol-based fuel infrastructure, such as Brazil, improving emissions reduction penetration rates without costs and complexities of establishing urea infrastructures. The LNC performance competes with urea SCR NOx reduction, catalyst volume, reductant consumption, and cost, plus it is proven to be durable, passing stationary test cycles and adequately recovering from sulfur poisoning. Controls are developed and applied on a 7.2L engine, an inline 6-cylinder non-EGR turbo diesel.
Technical Paper

Investigation Regarding the Influence of a Catalytic Combustion Chamber Coating on Gasoline Combustion Characteristics, Emission Formation and Engine Efficiency

2012-04-16
2012-01-1097
Over the past few years, both global warming and rising oil prices led to a significantly increased demand for low fuel consumption in passenger cars. However, the necessity to also meet the limits of today's and future emission regulations makes it more and more difficult to maintain a high engine efficiency without the use of an expensive external exhaust gas after-treatment system. Therefore, new technologies that simultaneously prevent emission formation and reduce fuel consumption inside the internal combustion engine during the combustion process itself are of highest interest. This paper analyzes the influence of a catalytic coating of the combustion chamber on combustion, emission formation and fuel consumption. For this purpose, test runs with a production 2.0-liter, 4-cylinder, 4-valve, double overhead camshaft (DOHC), port fuel injection (PFI) gasoline engine were performed.
Technical Paper

DPF Regeneration Response: Coupling Various DPFs with a Thermal Regeneration Unit to Assess System Behaviors

2011-09-13
2011-01-2200
Diesel Particulate Filters (DPFs) have been successfully applied for several years to reduce Particulate Matter (PM) emissions from on-highway applications, and similar products are now also applied in off-highway markets and retrofit solutions. Most solutions are catalytically-based, necessitating minimum operating temperatures and demanding engine support strategies to reduce risks [1, 2, 3, 4, 5, 6, 7, 8]. An ignition-based thermal combustion device is applied with Cordierite and SiC filters, evaluating various DPF conditions, including effects of soot load, exhaust flow rates, catalytic coatings, and regeneration temperatures. System designs are described, including flow and temperature uniformity, as well as soot load distribution and thermal gradient response.
Technical Paper

CFD Optimization of Exhaust Manifold for Large Diesel Engine Aftertreatment Systems

2011-09-13
2011-01-2199
To meet EPA Tier IV large diesel engine emission targets, intensive development efforts are necessary to achieve NOx reduction and Particulate Matter (PM) reduction targets [1]. With respect to NOx reduction, liquid urea is typically used as the reagent to react with NOx via SCR catalyst [2]. Regarding to PM reduction, additional heat is required to raise exhaust temperature to reach DPF active / passive regeneration performance window [3]. Typically the heat can be generated by external diesel burners which allow diesel liquid droplets to react directly with oxygen in the exhaust gas [4]. Alternatively the heat can be generated by catalytic burners which enable diesel vapor to react with oxygen via DOC catalyst mostly through surface reactions [5].
Technical Paper

A Dual - Reductant HC LNC Approach to Commercial Vehicle Tier 4 Final Solutions

2011-09-13
2011-01-2203
Stringent global emissions legislations demand effective NOx reduction strategies for both the engine as well as the aftertreatment. Diesel applications have previously applied Lean NOx Catalysts (LNCs) [1, 2], but their reduction efficiency and longevity have been far less than that of the competing ammonia-based SCR systems, such as urea [3]. A catalyst has been developed to significantly reduce NOx emissions, approaching 60% with ULSD and exceeding 95% with E85. Both thermal and sulfur aging are applied, as well as on-engine aging, illustrating resilient performance to accommodate necessary life requirements. A robust system is developed to introduce both ULSD from the vehicle's tank as well as E85 (up to 85% ethanol with the balance being gasoline) from a moderately sized supplemental tank, enabling extended mileage service intervals to replenish the reductant, as compared with urea, particularly when coupled with an engine-out based NOx reduction technology, such as EGR.
Technical Paper

SOLID SCR®: Demonstrating an Improved Approach to NOx Reduction via a Solid Reductant

2011-09-13
2011-01-2207
Stringent global emissions legislation demands effective NOx reduction strategies, particularly for the aftertreatment, and current typical liquid urea SCR systems achieve efficiencies greater than 90% [1]. However, with such high-performing systems comes the trade-off of requiring a tank of reductant (urea water solution) to be filled regularly, usually as soon as the fuel fillings or as far as oil changes. Advantages of solid reductants, particularly ammonium carbamate, include greater ammonia densities, enabling the reductant refill interval to be extended several multiples versus a given reductant volume of urea, or diesel exhaust fluid (DEF) [2]. An additional advantage is direct gaseous ammonia dosing, enabling reductant injection at lower exhaust temperatures to widen its operational coverage achieving greater emissions reduction potential [3], as well as eliminating deposits, reducing mixing lengths, and avoiding freeze/thaw risks and investments.
Technical Paper

Development of Urea SCR Systems for Large Diesel Engines

2011-09-13
2011-01-2204
EPA 2015 Tier IV emission requirements pose significant challenges to large diesel engine after treatment system development with respect to reducing exhaust emissions including HC, CO, NOx and Particulate Matter (PM). For a typical locomotive, marine or stationary generator engine with 8 to 20 cylinders and 2500 to 4500 BHP, the PM reduction target could be over 90% and NOx reduction target over 75% for a wide range of running conditions. Generally, HC, CO and PM reductions can be achieved by combining DOC, cDPF and active regeneration systems. NOx reduction can be achieved by injecting urea as an active reagent into the exhaust stream to allow NOx to react with ammonia per SCR catalysts, as the mainstream approach for on-highway truck applications.
Technical Paper

Performance Characterization of a Thermal Regeneration Unit for Exhaust Emissions Controls Systems

2011-09-13
2011-01-2208
Diesel Particulate Filters have been successfully applied for several years to reduce Particulate Matter (PM) emissions from on-highway applications, and similar products are now also applied in off-highway markets and retrofit solutions. As soot accumulates on the filter, backpressure increases, and eventually exhaust temperatures are elevated to burn off the soot, actively or passively. Unfortunately, in many real-world instances, some duty cycles never achieve necessary temperatures, and the ability of the engine and/or catalyst to elevate exhaust temperatures can be problematic, resulting in overloaded filters that have become clogged, necessitating service attention. An autonomous heat source is developed to eliminate such risks, applying an ignition-based combustor that leverages the current diesel fuel supply, providing necessary temperatures when needed, regardless of engine operating conditions.
Journal Article

Pre-Turbo Aftertreatment Position for Large Bore Diesel Engines - Compact & Cost-Effective Aftertreatment with a Fuel Consumption Advantage

2011-04-12
2011-01-0299
Tier 4 emissions legislation is emerging as a clear pre-cursor for widespread adoption of exhaust aftertreatment in off-highway applications. Large bore engine manufacturers are faced with the significant challenge of packaging a multitude of catalyst technologies in essentially the same design envelope as their pre-Tier 4 manifestations, while contending with the fuel consumption consequences of the increased back pressure, as well as the incremental cost and weight associated with the aftertreatment equipment. This paper discusses the use of robust metallic catalysts upstream of the exhaust gas turbine, as an effective means to reduce catalyst volume and hence the weight and cost of the entire aftertreatment package. The primarily steady-state operation of many large bore engine applications reduces the complication of overcoming pre-turbine catalyst thermal inertia under transient operation.
X